
Index construction Distributed indexing Dynamic indexing Index compression

NPFL103: Information Retrieval (3)
Index construction, Distributed and dynamic indexing, Index compression

Pavel Pecina
pecina@ufal.mff.cuni.cz

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Original slides are courtesy of Hinrich Schütze, University of Stuttgart.

1 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Contents

Index construction
BSBI algorithm
SPIMI algorithm

Distributed indexing
MapReduce

Dynamic indexing
Logarithmic merge

Index compression
Term statistics
Dictionary compression
Postings compression

2 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Index construction

3 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Hardware basics

▶ Data access much faster in memory than on HD disk (approx. 10×)

▶ Disk seeks are “idle” time: No data is transferred from disk while the
disk head is being positioned.

▶ To optimize transfer time from disk to memory: one large chunk is
faster than many small chunks.

▶ Disk I/O is block-based: Reading and writing of entire blocks (as
opposed to smaller chunks). Block sizes: 8KB to 256 KB

▶ Servers used in IR systems typically have tens or hundreds of GBs of
RAM, and TBs of disk space.

▶ Fault tolerance is expensive: It’s cheaper to use many regular
machines than one fault tolerant machine.

4 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Some HW statistics

symbol statistic value
s average seek time 5 ms = 5× 10−3 s
b transfer time per byte 0.02 µs = 2× 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation (e.g., compare+swap a word) 0.01 µs = 10−8 s
size of main memory several GBs
size of disk space 1 TB or more

▶ SSD (Solid State Drive) faster but smaller, more expensive, limitted write cycles

5 / 73

Index construction Distributed indexing Dynamic indexing Index compression

RCV1 collection

▶ Shakespeare’s collected works are not large enough for
demonstrating many of the points in this course.

▶ As an example for applying scalable index construction algorithms,
we will use the Reuters RCV1 collection.

▶ English newswire articles published in 1995–1996 (one year).

▶ https://trec.nist.gov/data/reuters/reuters.html

6 / 73

https://trec.nist.gov/data/reuters/reuters.html

Index construction Distributed indexing Dynamic indexing Index compression

A Reuters RCV1 document

7 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Reuters RCV1 statistics

N documents 800,000
L tokens per document 200
M terms (= word types) 400,000

bytes per token (incl. spaces/punct.) 6
bytes per token (without spaces/punct.) 4.5
bytes per term (= word type) 7.5

T non-positional postings 100,000,000

Exercise:

1. Average doc. frequency of a term (how many tokens)?

2. 4.5 bytes per token vs. 7.5 bytes per type: why the difference?

3. How many positional postings?

8 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Goal: construct the inverted index

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 …

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

10 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Index construction: Sort postings in memory
term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

11 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Sort-based index construction

▶ As we build index, we parse documents one at a time.

▶ The final postings for any term are incomplete until the end.

▶ Can we keep all postings in memory and then do the sort in-memory
at the end?

▶ No, not for large collections

▶ At 10–12 bytes per postings entry, we need a lot of space for large
collections.

▶ T = 100,000,000 in the case of RCV1: we can do this in memory on a
typical current machine.

▶ In-memory index construction does not scale for large collections.

▶ Thus: We need to store intermediate results on disk.
12 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Same algorithm for disk?

▶ Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

▶ No: Sorting T = 100,000,000 records on disk is too slow – too many
disk seeks.

▶ We need an external sorting algorithm.

13 / 73

Index construction Distributed indexing Dynamic indexing Index compression

“External” sorting algorithm (using few disk seeks)

▶ We must sort T = 100,000,000 non-positional postings.
▶ Each posting has size 12 bytes (4+4+4: termID, docID, doc. freq).

▶ Define a block to consist of 10,000,000 such postings
▶ We can easily fit that many postings into memory.

▶ We will have 10 such blocks for RCV1.

▶ Basic idea of algorithm:
▶ For each block:

(i) accumulate postings, (ii) sort in memory, (iii) write to disk

▶ Then merge the blocks into one long sorted order.

14 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Merging two blocks

Block 1
brutus d3
caesar d4
noble d3
with d4

Block 2
brutus d2
caesar d1
julius d1
killed d2

postings
to be merged brutus d2

brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged
postings

disk

15 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Blocked Sort-Based Indexing (BSBI)

BSBIndexConstruction()
1 n← 0
2 while (all documents have not been processed)
3 do n← n+ 1
4 block← ParseNextBlock()
5 BSBI-Invert(block)
6 WriteBlockToDisk(block, fn)
7 MergeBlocks(f1, . . . , fn; fmerged)

▶ BSBI-Invert:
1. sort [termID, docID] pairs
2. collect [termID, docID] pairs with the same docID

▶ Key decision: What is the size of one block?

16 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Problem with sort-based algorithm

▶ Our assumption was: we can keep the dictionary in memory.

▶ We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

▶ Actually, we could work with [term, docID] postings instead of
[termID, docID] postings …

▶ …but then intermediate files become very large. (We would end up
with a scalable, but very slow index construction method.)

18 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Single-pass in-memory indexing (SPIMI)

▶ Key idea 1: Generate separate dictionaries for each block – no need to
maintain term-termID mapping across blocks.

▶ Key idea 2: Don’t sort. Accumulate postings in postings lists as they
occur.

▶ With these two ideas we can generate a complete inverted index for
each block.

▶ These separate indexes can then be merged into one big index.

19 / 73

Index construction Distributed indexing Dynamic indexing Index compression

SPIMI-Invert

SPIMI-Invert(token_stream)
1 output_file← NewFile()
2 dictionary← NewHash()
3 while (free memory available)
4 do token← next(token_stream)
5 if term(token) /∈ dictionary
6 then postings_list← AddToDictionary(dictionary,term(token))
7 else postings_list← GetPostingsList(dictionary,term(token))
8 if full(postings_list)
9 then postings_list← DoublePostingsList(dictionary,term(token))

10 AddToPostingsList(postings_list,docID(token))
11 sorted_terms← SortTerms(dictionary)
12 WriteBlockToDisk(sorted_terms,dictionary,output_file)
13 return output_file

▶ Merging of blocks is analogous to BSBI.

▶ Compression of terms/postings makes SPIMI even more efficient

20 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Distributed indexing

21 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Distributed indexing

▶ For web-scale indexing: must use a distributed computer cluster

▶ Individual machines are fault-prone: can unpredictably slow down or
fail.

▶ How do we exploit such a pool of machines?

22 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Google data centers (estimates from 2016, Gartner)

▶ Google data centers mainly contain commodity machines.

▶ 2.5 million servers in 15 data centers are distributed all over the world.

▶ This is about 10% of the computing capacity of the world!

▶ If in a non-fault-tolerant system with 1000 nodes, each node has
99.9% uptime, what is the uptime of the system (assuming it does not
tolerate failures)?

Answer: 37% (0.9991000 = 0.3677)

▶ Suppose a server will fail after 3 years. For an installation of 1 million
servers, what is the interval between machine failures?

Answer: <2 minutes ((3 ∗ 365 ∗ 24 ∗ 60)/1000000 = 1.5768)

24 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Distributed indexing

▶ Maintain a master machine directing the job – considered “safe”

▶ Break up indexing into sets of parallel tasks

▶ Master machine assigns each task to an idle machine from a pool.

25 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Parallel tasks

▶ We will define two sets of parallel tasks and deploy two types of
machines to solve them: parsers, inverters

▶ Break the input document collection into splits (corresponding to
blocks in BSBI/SPIMI)

▶ Each split is a subset of documents.

26 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Process

Master:

1. Assigns a split to an idle parser machine.

Parser:

1. Reads a document at a time and emits [term,docID]-pairs.

2. Writes pairs into j partitions each for a range of terms’ first letters
(e.g., a–f, g–p, q–z; here: j = 3).

Inverter:

1. Collects all [term,docID] pairs (= postings) for one term-partition
(e.g., for a–f).

2. Sorts and writes to postings lists

27 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Data flow

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

28 / 73

Index construction Distributed indexing Dynamic indexing Index compression

MapReduce

▶ The index construction algorithm we just described is an instance of
MapReduce.

▶ MapReduce is a robust and conceptually simple framework for
distributed computing …

▶ …without having to write code for the distribution part.

▶ The original Google indexing system consisted of a number of phases,
each implemented in MapReduce.

29 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing

30 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing

▶ Up to now, we have assumed that collections are static.

▶ They rarely are: Documents are inserted, deleted and modified.

▶ Dictionary and postings lists have to be dynamically modified.

31 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing: Simplest approach

▶ Maintain big main index on disk

▶ New docs go into small auxiliary index in memory.

▶ Search across both, merge results

▶ Periodically, merge auxiliary index into big index

▶ Deletions:
▶ Invalidation bit-vector for deleted docs

▶ Filter docs returned by index using this bit-vector

32 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Issue with multiple indexes

▶ Corpus-wide statistics are hard to maintain.

▶ E.g., for hit-based spelling correction: how do we determine which
correction has the most hits in the collection?

▶ We will see that other such statistics are important in ranking.

▶ There is no easy way around this if we want to do dynamic indexing
efficiently.

33 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Issue with auxiliary and main index

▶ Frequent merges

▶ Poor search performance during index merge

▶ Actually:
▶ Merging of the auxiliary index into the main index is not that costly if

we keep a separate file for each postings list.

▶ But then we would need a lot of files – inefficient.

▶ Assumption for the rest of the lecture: The index is one big file.

▶ In reality: Use a scheme somewhere in between (e.g., split very large
postings lists into several files, collect small postings lists in one file)

34 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Logarithmic merge

▶ Logarithmic merging amortizes cost of merging indexes over time.

→ Users see smaller effect on response times.

▶ Maintain a series of indexes, each twice as large as the previous one.

▶ Keep smallest (Z0) in memory

▶ Larger ones (I0, I1, …) on disk

▶ If Z0 gets too big (> n), write to disk as I0

… or merge with I0 (if I0 already exists) and write merger to I1 etc.

36 / 73

Index construction Distributed indexing Dynamic indexing Index compression

LMergeAddToken(indexes,Z0, token)
1 Z0 ← Merge(Z0, {token})
2 if |Z0| = n
3 then for i← 0 to∞
4 do if Ii ∈ indexes
5 then Zi+1 ← Merge(Ii,Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes← indexes− {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii.)
9 indexes← indexes ∪ {Ii}

10 Break
11 Z0 ← ∅

LogarithmicMerge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes← ∅
3 while true
4 do LMergeAddToken(indexes,Z0, getNextToken())

37 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Logarithmic merge

▶ Number of indexes bounded by O(log T) (T is total number of
postings read so far)

▶ So query processing requires the merging of O(log T) indexes

▶ Time complexity of index construction is O(T log T).

…because each of T postings is merged O(log T) times.

▶ Auxiliary index: index construction time is O(T2) as each posting is
touched in each merge.

▶ Suppose auxiliary index has size a
▶ a+ 2a+ 3a+ 4a+ . . .+ na = a n(n+1)

2 = O(n2)

▶ So logarithming merging is an order of magnitude more efficient.

38 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing at large search engines

Often a combination of:

1. Frequent incremental changes

2. Rotation of large parts of the index that can then be swapped in

3. Occasional complete rebuild (becomes harder with increasing size)

39 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Building positional indexes

▶ Basically the same problem except that the intermediate data
structures are large.

40 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Index compression

41 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Inverted index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 …

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

▶ How much space do we need for the dictionary?
▶ How much space do we need for the postings file?
▶ How can we compress them?

42 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Why compression? (in general)

▶ Use less disk space (saves money)

▶ Keep more stuff in memory (increases speed)

▶ Speed up transferring data from disk to memory (increases speed)

[read compressed data and decompress in memory]
is faster than

[read uncompressed data]

▶ Premise: Decompression algorithms are fast.
… this is true of the decompression algorithms we will use.

43 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Why compression in information retrieval?

▶ First, we will consider space for dictionary
▶ Main motivation for dictionary compression: make it small enough to

keep in main memory

▶ Then for the postings file
▶ Motivation: reduce disk space needed, decrease time needed to read

from disk

▶ Note: Large search engines keep significant part of postings in memory

▶ We will use various compression schemes for dictionary and postings.

44 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Lossy vs. lossless compression

▶ Lossy compression: Discard some information

▶ Several of the preprocessing steps we frequently use can be viewed as
lossy compression:

▶ lowercasing, stop words removal, stemming, number elimination

▶ Lossless compression: All information is preserved.
▶ What we mostly do in index compression

45 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Model collection: The Reuters collection

symbol statistic value
N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000

47 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Effect of preprocessing for Reuters

word types non-positional postings positional postings
size of dictionary non-positional index positional index

size ∆% ∑
∆% size ∆

∑
∆% size ∆

∑
∆%

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2% -2% 100,680,242 -8% -8% 179,158,204 -9% -9%
case folding 391,523 -17% -19% 96,969,056 -3% -12% 179,158,204 -0% -9%
30 stop w’s 391,493 -0% -19% 83,390,443 -14% -24% 121,857,825 -31% -38%
150 stop w’s 391,373 -0% -19% 67,001,847 -30% -39% 94,516,599 -47% -52%
stemming 322,383 -17% -33% 63,812,300 -4% -42% 94,516,599 -0% -52%

48 / 73

Index construction Distributed indexing Dynamic indexing Index compression

How big is the term vocabulary?

▶ That is, how many distinct words are there?

▶ Can we assume there is an upper bound?

▶ Not really: At least 7020 ≈ 1037 different words of length 20.

▶ The vocabulary will keep growing with collection size.

▶ Heaps’ law: M = kTb

▶ Empirical law.

▶ M – size of the vocabulary, T – number of tokens in the collection.

▶ Linear in log-log space.

▶ Typical values for the parameters: 30 ≤ k ≤ 100 and b ≈ 0.5.

49 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Heaps’ law for Reuters

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g

1
0

 M

Vocabulary size M is a function
of collection size T:

M = kTb

The best least squares fit for
Reuters RCV1:

log10 M = 0.49 ∗ log10 T+1.64

M = 101.64T0.49

k = 101.64 ≈ 44
b = 0.49.

50 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Empirical fit for Reuters

▶ Good, as we just saw in the graph.

▶ For the first 1,000,020 tokens Heaps’law predicts 38,323 terms:

44× 1,000,0200.49 ≈ 38,323

▶ The actual number is 38,365 terms, very close to the prediction.

▶ Empirical observation: fit is good in general.

51 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Zipf’s law

▶ We have characterized the growth of the vocabulary in collections.

▶ We also want to know how many frequent vs. infrequent terms we
should expect in a collection.

▶ In natural language, there are a few very frequent terms and very
many very rare terms.

▶ Zipf’s law: cfi ∝ 1
i

▶ The ith most frequent term has frequency cfi proportional to 1/i.

▶ Collection frequency cfi: number of occurrences of term ti in the
collection.

52 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Zipf’s law: example

▶ Zipf’s law: cfi ∝ 1
i

▶ The ith most frequent term has frequency cfi proportional to 1/i.

▶ So if the most frequent term (the) occurs cf1 times, then the second
most frequent term (of) has half as many occurrences cf2 = 1

2cf1 …

▶ …and the third most frequent term (and) has a third as many
occurrences cf3 = 1

3cf1 etc.

▶ Equivalent: cfi = cik and log cfi = log c+ k log i (for k = −1)

▶ Example of a power law.

53 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Zipf’s law for Reuters

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

log10 rank

lo
g
1
0
 c

f

Fit is not great. What is
important is the key insight:

Few frequent terms, many
rare terms.

54 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary compression

▶ The dictionary is small compared to the postings file.

▶ But we want to keep it in memory.

▶ Also: competition with other applications, cell phones, onboard
computers, fast startup time

▶ So compressing the dictionary is important.

56 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Recall: Dictionary as array of fixed-width entries

Dictionary: term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
… … …
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

Space for Reuters: (20+4+4)*400,000 = 11.2 MB

57 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Fixed-width entries are bad.

▶ Most of the bytes in the term column are wasted.
▶ We allot 20 bytes for terms of length 1.

▶ We can’t handle hydrochlorofluorocarbons and
supercalifragilisticexpialidocious

▶ Average length of a term in English: 8 characters

▶ How can we use on average 8 characters per term?

58 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary as a string

. . . sys t i l esyzyget i csyzyg i a l syzygysza ibe ly i teszec inszono . . .

freq.

9
92
5
71
12
…

4 bytes

postings ptr.

→
→
→
→
→
…

4 bytes

term ptr.

3 bytes
…

59 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Space for dictionary as a string

▶ 4 bytes per term for frequency

▶ 4 bytes per term for pointer to postings list

▶ 8 bytes (on average) for term in string

▶ 3 bytes per pointer into string
(need log2 8 · 400000 < 24 bits to resolve 8 · 400,000 positions)

▶ Space: 400,000× (4 + 4 + 3 + 8) = 7.6MB (compared to 11.2 MB for
fixed-width array)

60 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary as a string with blocking

. . . 7 sys t i l e 9 syzyge t i c 8 syzyg i a l 6 syzygy11s za i be l y i t e 6 s z e c i n . . .

freq.

9
92
5
71
12
…

postings ptr.

→
→
→
→
→
…

term ptr.

…

61 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Space for dictionary as a string with blocking

▶ Example block size k = 4

▶ Where we used 4× 3 bytes for term pointers without blocking …

▶ …we now use 3 bytes for one pointer plus 4 bytes for indicating the
length of each term.

▶ We save 12− (3 + 4) = 5 bytes per block.

▶ Total savings: 400,000/4 ∗ 5 = 0.5 MB

▶ This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

62 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Lookup of a term without blocking

aid

box

den

ex

job

ox

pit

win

63 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Lookup of a term with blocking: (slightly) slower

aid box den ex

job ox pit win

64 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Front coding

One block in blocked compression (k = 4) …
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓

…further compressed with front coding.
8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n

65 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary compression for Reuters: Summary

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

66 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Postings compression

▶ The postings file is much larger than the dictionary (factor >10)

▶ Key desideratum: store each posting compactly

▶ A posting for our purposes is a docID.

▶ For Reuters (800,000 documents), we would use 32 bits per docID
when using 4-byte integers.

▶ Alternatively, we can use log2 800,000 ≈ 19.6 < 20 bits per docID.

▶ Our goal: use a lot less than 20 bits per docID.

68 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Key idea: Store gaps instead of docIDs

▶ Each postings list is ordered in increasing order of docID.

▶ Example postings list: computer: 283154, 283159, 283202, …

▶ It suffices to store gaps: 283159-283154=5, 283202-283154=43

▶ Example postings list using gaps : computer: 283154, 5, 43, …

▶ Gaps for frequent terms are small.

▶ Thus: We can encode small gaps with fewer than 20 bits.

69 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Gap encoding

encoding postings list
the docIDs … 283042 283043 283044 283045 …

gaps 1 1 1 …
computer docIDs … 283047 283154 283159 283202 …

gaps 107 5 43 …
arachnocentric docIDs 252000 500100

gaps 248100

70 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

71 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
…

Entry 1 if term occurs. e.g. Calpurnia occurs in Julius Caesar.
Entry 0 if term doesn’t occur. e.g. Calpurnia doesn’t occur in The tempest.

72 / 73

Index construction Distributed indexing Dynamic indexing Index compression

Summary

▶ We can now create an index for highly efficient Boolean retrieval that
is very space efficient.

▶ Only 10-15% of the total size of the text in the collection.

▶ However, we’ve ignored positional and frequency information.

▶ For this reason, space savings are less in reality.

73 / 73

	Index construction
	BSBI algorithm
	SPIMI algorithm

	Distributed indexing
	MapReduce

	Dynamic indexing
	Logarithmic merge

	Index compression
	Term statistics
	Dictionary compression
	Postings compression

